LABORATORY MANUAL

18MEL66 - COMPUTER AIDED MODELLING AND ANALYSIS LAB

INSTITUTE OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING
ATRIA INSTITUTE OF TECHNOLOGY
Adjacent to Bangalore Baptist Hospital
Hebbal, Bengaluru-560024

Department of Mechanical Engineering

Vision

To be a center of excellence in Mechanical Engineering education and interdisciplinary research to confrontreal world societal problems with professional ethics.

Mission

1. To push the frontiers of pedagogy amongst the students and develop new paradigms in research.
2. To develop products, processes, and technologies for the benefit of society in collaboration withindustry and commerce.
3. To mould the young minds and build a comprehensive personality by nurturing strong professionals with human ethics through interaction with faculty, alumni, and experts from academia/industry.

Computer aided engineering primarily uses Computer Aided Design (CAD) software, which are sometimes called CAE tools. CAE tools are being used, for example, to analyse the robustness and performance of components and assemblies. The term encompasses simulation, validation, and optimisation of products and manufacturing tools. In the future, CAE systems will be major providers of information to help support design teams in decision making. Computer-aided engineering is used in many fields such as automotive, aviation, space, and shipbuilding industries.

ATRIA INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering

$6^{\text {th }}$ Semester

Modeling and
Analysis Lab (FEA)
17MEL68
Academic Year 2020

Name of the Student

University Seat Number

BATCH

Prepared by

Mr Mithun C M

ATRIA INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering

CERTIFICATE

This isto certify thatMr./Ms. \qquad
bearing USN \qquad of \qquad semester and \qquad section has
satisfactorily completed the course of experiments in Modeling and Analysis Lab (FEA), code 17MEL68 prescribed by the Visvesvaraya Technological University, Belagavi of this Institute for the academic year 20-20

MARKS	
Maximum Marks	Marks Obtained

Signature of Faculty-In-Charge

Head of the Department
Date

PREFACE

FEA is the acronym for 'finite elements analysis'. Based on the finite element method (FEM), it is a technique that makes use of computers to predict the behavior of varied types of physical systems such as deformation of solids, heat conduction, and fluid flow. FEA software, or FEM software, is a very popular tool used by engineers and physicists because it allows the application of physical laws to real-life scenarios with precision, versatility, and practicality. The Modeling \& Analysis Laboratory contributes to educate the undergraduate students of $6^{\text {th }}$ semester B.E, VTU Belagavi in the field of Mechanical Engineering.

The objectives of this laboratory are to impart practical knowledge on analysis of simple structures like beams, bars, truss subjected to simple and complex loading patterns. It also focuses on practical study of dynamic systems of beams subjected to forced responses. With the study of thermal analysis concepts, the concepts of conduction, convection in a composite walls and fins cane be understood.

Demonstration exercises are provided to understand concepts of Mechanics of Materials, Machine kinematics and dynamics, Heart transfer. Various experiments are made to understand the industry oriented concepts.

I acknowledge Dr. M S Rajendra Kumar, head of the department for his valuable guidance and suggestions as per Revised Blooms Taxonomy in preparing the lab manual.

SYLLABUS

Subject Code	$:$ 18MEL66	IA Marks	$: 40$
No. of Practical Hrs. / Week	$: 03$	Exam Hours	$: 03$
Total No. of Practical Hrs.	$: 42$	Exam Marks	$: 60$

Students are expected-

- To acquire basic understanding of Modelling and Analysis software
- To understand the concepts of different kinds of loading on bars, trusses and beams, and analyse the results pertaining to various parameters like stresses and deformations.
- To lean to apply the basic principles to carry out dynamic analysis to know the natural frequencies of different kind of beams.

PART -A

Study of a FEA package and modelling and stress analysis of:
a. Bars of constant cross section area, tapered cross section area and stepped bar
b. Trusses - (Minimum 2 exercises of different types)
c. Beams - Simply supported, cantilever, beams with point load, UDL, beams with varying load etc. (Minimum 6 exercises)
d. Stress analysis of a rectangular plate with a circular hole.

PART -B

Thermal Analysis - 1D \& 2D problem with conduction and convection boundary conditions (Minimum 4 exercises of different types)
Dynamic Analysis to find:
a) Natural frequency of beam with fixed - fixed end condition
b) Response of beam with fixed - fixed end conditions subjected to forcing function
c) Response of Bar subjected to forcing functions

PART -C

a. Demonstrate the use of graphics standards (IGES, STEP etc) to import the model from modeler to solver.
b. Demonstrate one example of contact analysis to learn the procedure to carry out contact analysis.
c. Demonstrate at least two different types of example to model and analyse bars or plates made from composite material.

COURSE OUTCOMES

CO1: Use the modern tools to formulate the problem, create geometry, discretise, apply boundary conditions to solve problems of bars, truss, beams, and plate to find stresses with different-loading conditions.
CO2: Demonstrate the ability to obtain deflection of beams subjected to point, uniformly distributed and varying loads and use the available results to draw shear force and bending moment diagrams.
CO3: Analyse and solve 1D and 2D heat transfer conduction and convection problems with different boundary conditions.
CO4: Carry out dynamic analysis and finding natural frequencies of beams, plates, and bars for various boundary conditions and also carry out dynamic analysis with forcing functions.

Table of Contents

1 Stress analysis of a bar of uniform rectangular cross-section 3
2 Stress analysis of a bar of uniform circular cross-section 5
3 Stress analysis of a compound bar of uniform rectangular cross-section 7
4 Stress analysis of a bars with cross section varying in steps 10
5 Stress analysis of a bars with cross section varying in steps 13
$6 \quad$ Stress analysis of rods with cross section varying in steps 16
7 Stress analysis of a bars with tapered cross section 19
8 Stress analysis of a bars with tapered circular cross section 21
9 Stress analysis of a truss $1 \quad 23$
10 Stress analysis of truss 2 25
11 SFD \& BMD for a cantilever beam subjected to point load 27
12 SFD \& BMD for a cantilever beam subjected to a UDL 29
13 SFD \& BMD for a cantilever beam subjected to a UVL 31
14 SFD \& BMD for a cantilever beam subjected to combined loading 33
15 SFD \& BMD for a simply supported beam subjected to a point load 35
16 SFD \& BMD for a simply supported beam subjected to a UDL 37
17 SFD \& BMD for a simply supported beam subjected to combined loading 39
18 Stress analysis of a rectangular plate with a circular hole 41
19 Stress analysis of a rectangular plate with a elliptical hole 43
20 Modal analysis for a cantilever beam 45
21 Modal analysis for a fixed - fixed beam 47
22 One dimensional steady state heat conduction 49
23 One dimensional steady state heat conduction - convection 51
24 Temperature distribution in a infinite long fin 54

Department of Mechanical Engineering,
Atria Institute of Technology

List of figures

Figure 1-1 : Rectangular bar subjected to Uni-axial load 3
Figure 2-1 : Rod subjected to Uni-axial load 5
Figure 3-1 : Rectangular bar of different materials subjected to axial Ioad 7
Figure 4-1 : Rectangular bar of varying cross section subjected to Uni-axial load 10
Figure 5-1 : Rectangular bar of varying cross section \& different materials subjected to Uni-axial load 13
Figure 6-1 : Rod of varying cross section subjected to Uni-axial load 16
Figure 7-1 : Rectangular bar of tapered cross section subjected to Uni-axial load 19
Figure 8-1 : Rod of tapered cross section subjected to Uni-axial Ioad 21
Figure 9-1:2 structured truss member subjected to loading 23
Figure 10-1 : 3 structured truss member subjected to loading 25
Figure 11-1 : Cantilever beam subjected to Point Ioad 27
Figure 12-1 : Cantilever beam subjected to UDL 29
Figure 13-1 : Cantilever beam subjected to UVL 31
Figure 14-1 : Cantilever beam subjected to combined Ioading 33
Figure 15-1 : Simply supported beam subjected to point Ioad 35
Figure 16-1 : Simply supported beam subjected to UDL 37
Figure 17-1 : Simply supported beam subjected to combined loads 39
Figure 18-1 : Rectangular plate with a hole subjected to tensile Ioad 41
Figure 19-1 : Rectangular plate with a elliptical hole subjected to tensile Ioad 43
Figure 20-1 : Modal analysis for a cantilever beam 45
Figure 21-1 : Modal analysis for a fixed - fixed beam 47
Figure 22-1 : Plane wall subjected to steady state heat conduction 49
Figure 23-1 : Composite wall subjected to conduction - convection 51
Figure 24-1 : Circular fin of infinite length 54

1 Stress analysis of a bar of uniform rectangular cross-section

1.1 Aim

To determine the nodal displacement, stress and reaction force for a given bar of uniform cross section subjected to uni-axial tensile load.

Figure 1-1 : Rectangular bar subjected to Uni-axial load

1.2 Specification of the bar

Length of the bar	I	$=1250 \mathrm{~mm}$
Height of the bar	h	$=100 \mathrm{~mm}$
Thickness of the bar	t	$=50 \mathrm{~mm}$
Cross section area of the bar	$\mathrm{A}=\mathrm{h} \times \mathrm{t}$	$=5000 \mathrm{~mm}^{2}$
Material of the bar	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material	μ	$=0.3$
Poisson ratio	P	$=100 \mathrm{kN}$
Force applied		

1.3 Analytical solution

Displacement of the bar	δ	$=\frac{P l}{A E}=$
Stress in the bar	σ	$=\frac{P}{A}=$
Strain in bar	ϵ	$=\frac{\delta l}{l}=$

1.5 Numerical solution

2 Stress analysis of a bar of uniform circular cross-section

2.1 Aim

To determine the nodal displacement, stress and reaction force for a given bar of uniform cross section subjected to uni-axial tensile load.

Figure 2-1 : Rod subjected to Uni-axial load
2.2 Specification of the bar

Length of the bar	$=1250 \mathrm{~mm}$	
Diameter of the rod	d	$=100 \mathrm{~mm}$
Cross section area of the bar	$\mathrm{A}=\frac{\pi}{4} d^{2}$	$=7850 \mathrm{~mm}^{2}$
Material of the bar		$=$ Mild Steel
Young's Modulus of the Material	E	$=210 \mathrm{GPa}$
Poisson ratio	μ	$=0.3$
Force applied	P	$=100 \mathrm{kN}$

2.3 Analytical solution

Displacement of the bar	δ	$=\frac{P l}{A E}=$
Stress in the bar	σ	$=\frac{P}{A}=$
Strain in bar	ϵ	$=\frac{\delta l}{l}=$

2.5 Numerical solution

3 Stress analysis of a compound bar of uniform rectangular cross-section

3.1 Aim

To determine the nodal displacement, stress and reaction force for a given bar of uniform cross section subjected to uni-axial tensile load.

Figure 3-1 : Rectangular bar of different materials subjected to axial load

3.2 Specification of the bar

Length of the bar 1	l_{1}	$=800 \mathrm{~mm}$
Height of the bar 1	h_{1}	$=100 \mathrm{~mm}$
Thickness of the bar 1	t_{1}	$=50 \mathrm{~mm}$
Cross section area of the bar 1	A_{1}	$=5000 \mathrm{~mm}^{2}$
Material of the bar 1	E_{1}	$=210 \mathrm{GPa}$
Young's Modulus of the Material 1	μ_{1}	$=0.3$
Poisson ratio of bar 1	P_{1}	$=50 \mathrm{kN}$
Force on bar 1	l_{2}	$=700 \mathrm{~mm}$
Length of the bar 2	h_{2}	$=100 \mathrm{~mm}$
Height of the bar 2	t_{2}	$=50 \mathrm{~mm}$
Thickness of the bar 2		

Finite Element Analysis Lab, 17MEL68

Cross section area of the bar 2	A_{2}	$=5000 \mathrm{~mm}^{2}$
Material of the bar 2		$=$ Aluminium
Young's Modulus of the Material 2	E_{2}	$=80 \mathrm{GPa}$
Poisson ratio of bar 2	μ_{2}	$=0.28$
Force on bar 2	P_{2}	$=-30 \mathrm{kN}$
Length of the bar 3	h_{3}	$=500 \mathrm{~mm}$
Height of the bar 3	t_{3}	$=50 \mathrm{~mm}$
Thickness of the bar 3	A_{3}	$=5000 \mathrm{~mm}{ }^{2}$
Cross section area of the bar 3		$=$ Copper
Material of the bar 3	E_{3}	$=120 \mathrm{GPa}$
Young's Modulus of the Material 3	μ_{3}	$=0.35$
Poisson ratio of bar 3	P_{3}	$=-60 \mathrm{kN}$
Force on bar 3		

3.3 Analytical solution

Displacement of the bar 1	δ_{1}	$=\frac{P_{1} l_{1}}{A_{1} E_{1}}$	
Stress in the bar 1	σ_{1}	$=\frac{P_{1}}{A_{1}}$	
Strain in bar 1	ϵ_{1}	$=\frac{\delta l_{1}}{l_{1}}$	
Displacement of the bar 2	δ_{2}	$=\frac{P_{2} l_{2}}{A_{2} E_{2}}$	
Stress in the bar 2	σ_{2}	$=\frac{P_{2}}{A_{2}}$	
Strain in bar 2	ϵ_{2}	$=\frac{\delta l_{2}}{l_{2}}$	
Displacement of the bar 3	δ_{3}	$=\frac{P_{3} l_{3}}{A_{3} E_{3}}$	

Stress in the bar 3	σ_{3}	$=\frac{P_{3}}{A_{3}}$	
Strain in bar 3	ϵ_{3}	$=\frac{\delta l_{3}}{l_{3}}$	
Total displacement of bar	δ	$=\delta_{1}+\delta_{2}+\delta_{3}$	

3.4 Calculations

3.5 Numerical solution

4 Stress analysis of a bars with cross section varying in steps

4.1 Aim

To determine the nodal displacement, stress and reaction force for a given bar of stepped cross section subjected to uni-axial tensile load.

Figure 4-1 : Rectangular bar of varying cross section subjected to Uni-axial load

The thickness of all the bars is 10 mm

4.2 Specification of the bar

Length of the bar 1	l_{1}	$=750 \mathrm{~mm}$
Height of the bar 1	h_{1}	$=95 \mathrm{~mm}$
Thickness of the bar 1	t_{1}	$=10 \mathrm{~mm}$
Cross section area of the bar 1	A_{1}	$=950 \mathrm{~mm}^{2}$
Material of the bar 1	E_{1}	$=210 \mathrm{GPa}$
Young's Modulus of the Material 1	μ_{1}	$=0.3$
Poisson ratio of bar 1	l_{2}	$=1250 \mathrm{~mm}$
Length of the bar 2	h_{2}	$=50 \mathrm{~mm}$
Height of the bar 2	t_{2}	$=10 \mathrm{~mm}$
Thickness of the bar 2	A_{2}	$=500 \mathrm{~mm}^{2}$
Cross section area of the bar 2		

Finite Element Analysis Lab, 17MEL68

Material of the bar 2		$=$ Mild Steel
Young's Modulus of the Material 2	E_{2}	$=210 \mathrm{GPa}$
Poisson ratio of bar 2	μ_{2}	$=0.3$
Length of the bar	l_{3}	$=1000 \mathrm{~mm}$
Height of the bar 3	h_{3}	$=75 \mathrm{~mm}$
Thickness of the bar 3	t_{3}	$=10 \mathrm{~mm}$
Cross section area of the bar 3	A_{3}	$=750 \mathrm{~mm}^{2}$
Material of the bar 3	E_{3}	$=210 \mathrm{GPa}$
Young's Modulus of the Material 3	μ_{3}	$=0.3$
Poisson ratio of bar 3	P	$=100 \mathrm{kN}$
Force applied		

4.3 Analytical solution

Displacement of the bar 1	δ_{1}	$=\frac{P_{1} l_{1}}{A_{1} E_{1}}$	
Stress in the bar 1	σ_{1}	$=\frac{P_{1}}{A_{1}}$	
Strain in bar 1	ϵ_{1}	$=\frac{\delta l_{1}}{l_{1}}$	
Displacement of the bar 2	δ_{2}	$=\frac{P_{2} l_{2}}{A_{2} E_{2}}$	
Stress in the bar 2	σ_{2}	$=\frac{P_{2}}{A_{2}}$	
Strain in bar 2	ϵ_{2}	$=\frac{\delta l_{2}}{l_{2}}$	
Displacement of the bar 3	δ_{3}	$=\frac{P_{3} l_{3}}{A_{3} E_{3}}$	
Stress in the bar 3	σ_{3}	$=\frac{P_{3}}{A_{3}}$	
Strain in bar 3	ϵ_{3}	$=\frac{\delta l_{3}}{l_{3}}$	

Total elongation of the bar	δ	$=\delta_{1}+\delta_{2}+\delta_{3}$	

4.4 Calculations

4.5 Numerical solution

5 Stress analysis of a bars with cross section varying in steps

5.1 Aim

To determine the nodal displacement, stress and reaction force for a given bar of stepped cross section subjected to uni-axial tensile load.

Figure 5-1 : Rectangular bar of varying cross section \& different materials subjected to Uni-axial load
The thickness of all the bars is 10 mm

5.2 Specification of the bar

Length of the bar 1	l_{1}	$=750 \mathrm{~mm}$
Height of the bar 1	h_{1}	$=95 \mathrm{~mm}$
Thickness of the bar 1	t_{1}	$=10 \mathrm{~mm}$
Cross section area of the bar 1	A_{1}	$=950 \mathrm{~mm}^{2}$
Material of the bar 1	E_{1}	$=210 \mathrm{GPa}$
Young's Modulus of the Material 1	μ_{1}	$=0.3$
Poisson ratio of bar 1	l_{2}	$=1250 \mathrm{~mm}$
Length of the bar 2	h_{2}	$=50 \mathrm{~mm}$
Height of the bar 2		

Finite Element Analysis Lab, 17MEL68

Thickness of the bar 2	t_{2}	$=10 \mathrm{~mm}$
Cross section area of the bar 2	A_{2}	$=500 \mathrm{~mm}^{2}$
Material of the bar 2		$=$ Aluminium
Young's Modulus of the Material2	E_{2}	$=80 \mathrm{GPa}$
Poisson ratio of bar 2	μ_{2}	$=0.3$
Length of the bar	l_{3}	$=1000 \mathrm{~mm}$
Height of the bar 3	h_{3}	$=75 \mathrm{~mm}$
Thickness of the bar 3	t_{3}	$=10 \mathrm{~mm}$
Cross section area of the bar 3	A_{3}	$=750 \mathrm{~mm}^{2}$
Material of the bar 3		$=C 0 p p e r$
Young's Modulus of the Material 3	E_{3}	$=120 \mathrm{GPa}$
Poisson ratio of bar 3	μ_{3}	$=0.35$
Force applied	P	$=100 \mathrm{kN}$

5.3 Analytical solution

Displacement of the bar 1	δ_{1}	$=\frac{P_{1} l_{1}}{A_{1} E_{1}}$	
Stress in the bar 1	σ_{1}	$=\frac{P_{1}}{A_{1}}$	
Strain in bar 1	ϵ_{1}	$=\frac{\delta l_{1}}{l_{1}}$	
Displacement of the bar 2	δ_{2}	$=\frac{P_{2} l_{2}}{A_{2} E_{2}}$	
Stress in the bar 2	σ_{2}	$=\frac{P_{2}}{A_{2}}$	
Strain in bar 2	ϵ_{2}	$=\frac{\delta l_{2}}{l_{2}}$	
Displacement of the bar 3	δ_{3}	$=\frac{P_{3} l_{3}}{A_{3} E_{3}}$	

Finite Element Analysis Lab, 17MEL68

Stress in the bar 3	σ_{3}	$=\frac{P_{3}}{A_{3}}$	
Strain in bar 3	ϵ_{3}	$=\frac{\delta l_{3}}{l_{3}}$	
Total elongation of the bar	δ	$=\delta_{1}+\delta_{2}+\delta_{3}$	

5.4 Calculations

5.5 Numerical solution

6 Stress analysis of rods with cross section varying in steps

6.1 Aim

To determine the nodal displacement, stress and reaction force for a given bar of stepped cross section subjected to uni-axial tensile load.

Figure 6-1: Rod of varying cross section subjected to Uni-axial load

6.2 Specification of the bar

Length of the rod 1	l_{1}	$=750 \mathrm{~mm}$
Diameter of the rod 1	d_{1}	$=95 \mathrm{~mm}$
Cross section area of the rod 1	$\mathrm{A}=\frac{\pi}{4} d_{1}{ }^{2}$	$=7084.6 \mathrm{~mm}^{2}$
Material of the rod 1		$=$ Mild Steel
Young's Modulus of the Material	E_{1}	$=210 \mathrm{GPa}$
Poisson ratio of the rod 1	μ_{1}	$=0.3$
Force applied	$=100 \mathrm{kN}$	
Length of the rod 2	l_{2}	$=1250 \mathrm{~mm}$
Diameter of the rod 2	d_{2}	$=50 \mathrm{~mm}$
Cross section area of the rod 2	$\mathrm{A}=\frac{\pi}{4} d_{2}{ }^{2}$	$=1962.5 \mathrm{~mm}{ }^{2}$
Material of the rod 2		$=$ Mild Steel

Finite Element Analysis Lab, 17MEL68

Young's Modulus of the Material	E_{2}	$=210 \mathrm{GPa}$
Poisson ratio of the rod 2	μ_{2}	$=0.3$
Force applied	P	$=100 \mathrm{kN}$
Length of the rod 3	l_{3}	$=1000 \mathrm{~mm}$
Diameter of the rod 3	d_{3}	$=75 \mathrm{~mm}$
Cross section area of the rod 3	$\mathrm{A}=\frac{\pi}{4} d_{3}{ }^{2}$	$=4415.62 \mathrm{~mm}^{2}$
Material of the rod 3		$=$ Mild Steel
Young's Modulus of the Material	E_{3}	$=210 \mathrm{GPa}$
Poisson ratio of the rod 3	μ_{3}	$=0.3$
Force applied	P	$=100 \mathrm{kN}$

6.3 Analytical solution

Displacement of the bar 1	δ_{1}	$=\frac{P_{1} l_{1}}{A_{1} E_{1}}$	
Stress in the bar 1	σ_{1}	$=\frac{P_{1}}{A_{1}}$	
Strain in bar 1	ϵ_{1}	$=\frac{\delta l_{1}}{l_{1}}$	
Displacement of the bar 2	δ_{2}	$=\frac{P_{2} l_{2}}{A_{2} E_{2}}$	
Stress in the bar 2	σ_{2}	$=\frac{P_{2}}{A_{2}}$	
Strain in bar 2	ϵ_{2}	$=\frac{\delta l_{2}}{l_{2}}$	
Displacement of the bar 3	δ_{3}	$=\frac{P_{3} l_{3}}{A_{3} E_{3}}$	
Stress in the bar 3	σ_{3}	$=\frac{P_{3}}{A_{3}}$	
Strain in bar 3	ϵ_{3}	$=\frac{\delta l_{3}}{l_{3}}$	
Total elongation of the bar	δ	$=\delta_{1}+\delta_{2}+\delta_{3}$	

6.5 Numerical solution

7 Stress analysis of a bars with tapered cross section

7.1 Aim

To determine the nodal displacement, stress and reaction force for a given bar of tapered cross section subjected to uni-axial tensile load.

Figure 7-1 : Rectangular bar of tapered cross section subjected to Uni-axial load

7.2 Specification of the bar

Length of the bar	$=150 \mathrm{~mm}$	
Height of the bar at one end	b_{1}	$=100 \mathrm{~mm}$
Height of the bar at other end	b_{2}	$=50 \mathrm{~mm}$
Thickness of the bar	t	$=10 \mathrm{~mm}$
Material of the bar	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material	μ	$=0.3$
Poisson ratio	P	$=100 \mathrm{kN}$
Force applied		

7.3 Analytical solution

Displacement of the bar	δ	$=\frac{P l \ln \frac{b_{1}}{b_{2}}}{t E\left(b_{1}-b_{2}\right)}$	

7.5 Numerical solution

8 Stress analysis of a bars with tapered circular cross section

8.1 Aim

To determine the nodal displacement, stress and reaction force for a given rod of tapered cross section subjected to uni-axial tensile load.

Figure 8-1 : Rod of tapered cross section subjected to Uni-axial load

8.2 Specification of the bar

Length of the bar	$=1500 \mathrm{~mm}$	
Diameter of the bar at one end	d_{1}	$=100 \mathrm{~mm}$
Diameter of the bar at other end	d_{2}	$=50 \mathrm{~mm}$
Material of the bar		$=$ Mild Steel
Young's Modulus of the Material	E	$=210 \mathrm{GPa}$
Poisson ratio	μ	$=0.3$
Force applied	P	$=100 \mathrm{kN}$

8.3 Analytical solution

Displacement of the bar	δ	$=\frac{4 P l}{\pi E d_{1} d_{2}}$	
Strain in bar	ϵ	$=\frac{\delta l}{l}$	

8.5 Numerical solution

9 Stress analysis of a truss 1

9.1 Aim

To determine the stress developed and displacement of the given truss member.

Figure 9-1: 2 structured truss member subjected to loading

9.2 Specification of the truss

Area of section 1	A_{1}	$=1000 \mathrm{~mm}^{2}$
Area of section 2	A_{2}	$=1250 \mathrm{~mm}^{2}$
Load on the truss member	P	$=40 \mathrm{kN}$
Material of the member		$=$ Mild Steel
Young's Modulus of the Material	E	$=210 \mathrm{GPa}$

9.3 Analytical ${ }^{\text {solution }}$

Maximum displacement of truss	δ	$=$	$=$
Maximum stress in the member	σ	$=$	$=$

9.5 Numerical solution

10 Stress analysis of truss 2

10.1 Aim

To determine the stress developed and displacement of the given truss member.

Figure 10-1 : 3 structured truss member subjected to loading
10.2 Specification of the truss

Area of all truss members	A	$=1300 \mathrm{~mm}^{2}$
Load on the truss member	P	$=45 \mathrm{kN}$
Material of the member		$=$ Mild Steel
Young's Modulus of the Material	E	$=210 \mathrm{GPa}$

10.3 Analytical solution

Maximum displacement of truss	δ	$=$	$=$
Maximum stress in the member	σ	$=$	$=$

10.4 Calculations

10.5 Numerical solution

11 SFD \& BMD for a cantilever beam subjected to point load

11.1 Aim

To draw the SFD \& BMD for a given cantilever beam to point load

Figure 11-1 : Cantilever beam subjected to Point load
11.2 Specification of the beam

Length of the beam	$=1250 \mathrm{~mm}$	
Height of the beam	h	$=100 \mathrm{~mm}$
Width of the beam	b	$=25 \mathrm{~mm}$
Area Moment of inertia	I	$=2.08 \times 10^{6} \mathrm{~mm}^{4}$
Material of the beam	M	$=1.25 \times 10^{6} \mathrm{~N}-\mathrm{mm}$
Maximum bending moment	y	$=50 \mathrm{~mm}$
Distance from the neutral fibre	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material	P	$=1 \mathrm{kN}$
Force applied		

11.3 Analyticalsolsfig\& BMD for a cantilever beam subjected to a UDL

Deflection of the beam 12.1 Aim	δ	$=\frac{P l^{3}}{3 E I}$	
fodraw the SFD \& BMD for a given cantilever beqm shwjected to UDL			
Bending stress			

11.4 Calculations

11.5 Numerical solution

12 SFD \& BMD for a cantilever beam subjected to a UDL

12.1 Aim

To draw the SFD \& BMD for a given cantilever beam subjected to UDL

Figure 12-1 : Cantilever beam subjected to UDL

12.2 Specification of the beam

Length of the beam	l	$=1250 \mathrm{~mm}$
Height of the beam	h	$=100 \mathrm{~mm}$
Width of the beam	b	$=25 \mathrm{~mm}$
Area Moment of inertia	l	$=2.08 \times 10^{6} \mathrm{~mm}^{4}$
Material of the beam	M	$=781250 \mathrm{~N}-\mathrm{mm}$
Maximum bending moment	y	$=50 \mathrm{~mm}$
Distance from the neutral fibre	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material	w	$=1 \mathrm{kN} / \mathrm{m}$
Uniformly distributed load		

12.3 Analytical solution

Deflection of the beam	δ	$=\frac{w l^{4}}{8 E I}$	

13 SFD \& BMD for a cantilever beam subjected to a UVL

13.1 Aim

¥2.4raCalqulationsBMD for a given cantilever beam subjected to UVL
12.5 Numerical solution

13 SFD \& BMD for a cantilever beam subjected to a UVL

13.1 Aim

To draw the SFD \& BMD for a given cantilever beam subjected to UVL

Figure 13-1 : Cantilever beam subjected to UVL

13.2 Specification of the beam

Length of the beam	$=1250 \mathrm{~mm}$	
Height of the beam	h	$=100 \mathrm{~mm}$
Width of the beam	b	$=25 \mathrm{~mm}$
Area Moment of inertia	$=2.08 \times 10^{6} \mathrm{~mm}^{4}$	
Material of the beam	M	$=260416 \mathrm{~N}-\mathrm{mm}$
Maximum bending moment	y	$=50 \mathrm{~mm}$
Distance from the neutral fibre	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material	w	$=1 \mathrm{kN} / \mathrm{m}$
Uniformly varying load		

13.3 Analytical solution

Deflection of the beam	δ	$=\frac{w l^{4}}{30 E I}$	

13 SFD \& BMD for a cantilever beam subjected to a UVL

13.1 Aim
₹3.4raCalqulationsBMD for a given cantilever beam subjected to UVL

13.5 Numerical solution

\square

14 SFD \& BMD for a cantilever beam subjected to combined loading

14.1 Aim

To draw the SFD \& BMD for a given cantilever beam subjected to combined loading

Figure 14-1 : Cantilever beam subjected to combined loading

14.2 Specification of the beam

Length of the beam	I	$=2700 \mathrm{~mm}$
Height of the beam	h	$=250 \mathrm{~mm}$
Width of the beam	b	$=100 \mathrm{~mm}$
Area Moment of inertia	I	$=130.208 \times 10^{6} \mathrm{~mm}^{4}$
Material of the beam	M	$=110 \times 10^{6} \mathrm{~N}-\mathrm{mm}$
Maximum bending moment	y	$=50 \mathrm{~mm}$
Distance from the neutral fibre	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material		

14.3 Analytical solution

Bending stress	σ	$=\frac{M y}{I}$	

14.4 Calculations

14.5 Numerical solution

15 SFD \& BMD for a simply supported beam subjected to a point load

15.1 Aim

To draw the SFD \& BMD for a given simply supported beam subjected to point load

1 kN

Figure 15-1 : Simply supported beam subjected to point load

15.2 Specification of the beam

Length of the beam	I	$=1250 \mathrm{~mm}$
Height of the beam	h	$=100 \mathrm{~mm}$
Width of the beam	b	$=25 \mathrm{~mm}$
Area Moment of inertia	l	$=2.08 \times 10^{6} \mathrm{~mm}^{4}$
Material of the beam	M	$=250000 \mathrm{~N}-\mathrm{mm}$
Maximum bending moment	y	$=50 \mathrm{~mm}$
Distance from the neutral fibre	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material	P	$=1 \mathrm{kN}$
Force applied		

15.3 Analytical solution

Deflection of the beam	δ	$=\frac{P l^{3}}{48 E I}$	
Bending stress	σ	$=\frac{M y}{I}$	

15.4 Calculations

15.5 Numerical Solution

16 SFD \& BMD for a simply supported beam subjected to a UDL

16.1 Aim

To draw the SFD \& BMD for a given simply supported beam subjected to UDL

1 kN/m

1.25m

Figure 16-1 : Simply supported beam subjected to UDL

16.2 Specification of the beam

Length of the beam	I	$=1250 \mathrm{~mm}$
Height of the beam	h	$=100 \mathrm{~mm}$
Width of the beam	b	$=25 \mathrm{~mm}$
Area Moment of inertia	l	$=2.08 \times 10^{6} \mathrm{~mm}^{4}$
Material of the beam	M	$=195312.5 \mathrm{~N}-\mathrm{mm}$
Maximum bending moment	y	$=50 \mathrm{~mm}$
Distance from the neutral fibre	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material	w	$=1 \mathrm{kN} / \mathrm{m}$
Uniformly distributed load		

16.3 Analytical solution

Deflection of the beam	δ	$=\frac{5 w l^{4}}{384 E I}$	
Bending stress	σ	$=\frac{M y}{I}$	

16.4 Calculations

16.5 Numerical solution

17 SFD \& BMD for a simply supported beam subjected to combined loading

17.1 Aim

To draw the SFD \& BMD for a given simply supported beam subjected to combined loading

Figure 17-1 : Simply supported beam subjected to combined loads

17.2 Specification of the beam

Length of the beam	$=8000 \mathrm{~mm}$	
Height of the beam	h	$=250 \mathrm{~mm}$
Width of the beam	b	$=100 \mathrm{~mm}$
Area Moment of inertia	l	$=130.208 \times 10^{6} \mathrm{~mm}^{4}$
Material of the beam	M	$=110 \times 10^{6} \mathrm{~N}-\mathrm{mm}$
Maximum bending moment	y	$=50 \mathrm{~mm}$
Distance from the neutral fibre	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material		

17.3 Analytical solution

Bending stress	σ	$=\frac{M y}{I}$	

17.4 Calculations

17.5 Numerical Solution

I

18 Stress analysis of a rectangular plate with a circular hole

18.1 Aim

To find the stress distribution for a plate with hole subjected to load

Figure 18-1: Rectangular plate with a hole subjected to tensile load
18.2 Specification of the plate

Length of the plate	$=80 \mathrm{~mm}$	
Width of the plate	w	$=50 \mathrm{~mm}$
Thickness of the plate	t	$=10 \mathrm{~mm}$
Material of the plate		$=$ Mild Steel
Diameter of the hole	d	$=10 \mathrm{~mm}$
Axial Load	F	$=10 \mathrm{kN}$
Young's Modulus of the Material	E	$=210 \mathrm{GPa}$

18.3 Analytical solution

Nominal Stress	$\sigma_{\text {nominal }}$	$=\frac{F}{(w-d) t}$	
Stress concentration factor	K_{σ}	$=\frac{\sigma_{\max }}{\sigma_{\text {nominal }}}$	

Maximum Stress	$\sigma_{\max }$	$=K_{\sigma} \times \sigma_{\text {nominal }}$	

18.4 Calculations

18.5 FE solution

19 Stress analysis of a rectangular plate with a elliptical hole

19.1 Aim

To find the stress distribution for a plate with elliptical hole subjected to load

Figure 19-1 : Rectangular plate with a elliptical hole subjected to tensile load

19.2 Specification of the plate

Length of the plate	I	$=80 \mathrm{~mm}$
Width of the plate	w	$=50 \mathrm{~mm}$
Thickness of the plate	t	$=10 \mathrm{~mm}$
Material of the plate	2a	$=20 \mathrm{~mm}$
Semi Major axis	2 b	$=10 \mathrm{~mm}$
Semi Minor axis	F	$=10 \mathrm{kN}$
Axial Load	E	$=210 \mathrm{GPa}$
Young's Modulus of the Material		

19.3 Analytical solution

Nominal Stress	$\sigma_{\text {nominal }}$	$=\frac{F}{(w-2 b) t}$	

Finite Element Analysis Lab, 17MEL68

Stress concentration factor	K_{σ}	$=\frac{\sigma_{\max }}{\sigma_{\text {nominal }}}$	
Maximum Stress	$\sigma_{\max }$	$=K_{\sigma} \times \sigma_{\text {nominal }}$	

19.4 Calculations

19.5 Numerical solution

20 Modal analysis for a cantilever beam

20.1 Aim

To find the natural frequencies of a cantilever beam

Figure 20-1 : Modal analysis for a cantilever beam

20.2 Specifications of the beam

Length of the beam	I	$=1250 \mathrm{~mm}$
Height of the beam	h	$=100 \mathrm{~mm}$
Width of the beam	b	$=25 \mathrm{~mm}$
Area Moment of inertia	I	$=2.08 \times 10^{6} \mathrm{~mm}^{4}$
Material of the beam	E	$=210 \mathrm{GPa}$
Youngs Modulus	A	$=250 \mathrm{~mm} \mathrm{~m}^{2}$
Area of the beam	ρ	$=7830 \mathrm{~kg} / \mathrm{m}^{3}$
Mass density of the given material		

20.3 Analytical solution

Natural frequency	ω	$=(\beta I)^{2} \sqrt{\frac{E I}{\rho A l^{4}}}$
	$\beta_{1} l$	$=1.875104$

Finite Element Analysis Lab, 17MEL68

	$\beta_{2} l$	$=4.694091$
	$\beta_{3} l$	$=7.854757$
	$\beta_{4} l$	$=10.995541$
$1^{\text {st }}$ mode	ω_{1}	
$2^{\text {nd }}$ mode	ω_{2}	
$3^{\text {rd }}$ mode	ω_{3}	
$4^{\text {th }}$ mode	ω_{4}	

20.4 Calculations

20.5 Numerical solution

21 Modal analysis for a fixed - fixed beam

21.1 Aim

To find the natural frequencies of a cantilever beam

Figure 21-1 : Modal analysis for a fixed - fixed beam

21.2 Specifications of the beam

Length of the beam	I	$=1250 \mathrm{~mm}$
Height of the beam	h	$=100 \mathrm{~mm}$
Width of the beam	b	$=25 \mathrm{~mm}$
Area Moment of inertia	I	$=2.08 \times 10^{6} \mathrm{~mm}^{4}$
Material of the beam	E	$=210 \mathrm{GPa}$
Youngs Modulus	A	$=250 \mathrm{~mm}{ }^{2}$
Area of the beam	ρ	$=7830 \mathrm{~kg} / \mathrm{m}^{3}$
Mass density of the given material		

21.3 Analytical solution

Natural frequency	ω	$=(\beta I)^{2} \sqrt{\frac{E I}{\rho A l^{4}}}$

Finite Element Analysis Lab, 17MEL68

	$\beta_{1} l$	$=4.730041$
	$\beta_{2} l$	$=7.853205$
	$\beta_{3} l$	$=10.995608$
$1^{\text {st }}$ mode	$\beta_{4} l$	$=14.137165$
$2^{\text {nd }}$ mode	ω_{1}	
$3^{\text {rd }}$ mode	ω_{2}	
$4^{\text {th }}$ mode	ω_{3}	

21.4 Calculations

21.5 Numerical solution

22 One dimensional steady state heat conduction

22.1 Aim

To determine the heat loss and temperature distribution in a composite plane wall

Figure 22-1 : Plane wall subjected to steady state heat conduction

22.2 Specification of the wall

Thickness of wall 1
$\mathrm{t}_{1} \quad=0.5 \mathrm{~m}$

Thermal conductivity of wall 1
$\mathrm{k}_{1} \quad=1.4 \mathrm{~W} / \mathrm{m}-\mathrm{k}$

Thickness of wall 2
$\mathrm{t}_{2}=0.15 \mathrm{~m}$

Thermal conductivity of wall 2
$\mathrm{k}_{2} \quad=0.35 \mathrm{~W} / \mathrm{m}-\mathrm{k}$

22.3 Analytical solution

Heat loss per unit area	$=\frac{T_{1}-T_{3}}{\frac{L_{1}}{K_{1}}-\frac{L_{2}}{K_{2}}}$	$=1450 \mathrm{~W}$	
Intermediate temperature	T_{2}	$=\mathrm{T}_{1}-\frac{q t_{1}}{k_{1}}$	$=682^{\circ} \mathrm{C}$

22.4 Calculations

22.5 Numerical solution

23 One dimensional steady state heat conduction - convection

23.1 Aim

To determine the heat loss and temperature distribution in a composite plane wall

Figure 23-1 : Composite wall subjected to conduction - convection

23.2 Specification of the wall

Thickness of wall 1	t_{1}	$=0.5 \mathrm{~m}$
Thermal conductivity of wall 1	k_{1}	$=1.4 \mathrm{~W} / \mathrm{m}-\mathrm{k}$
Thickness of wall 2	t_{2}	$=0.15 \mathrm{~m}$
Thermal conductivity of wall 2	k_{2}	$=0.35 \mathrm{~W} / \mathrm{m}-\mathrm{k}$
Convective heat transfer coefficient	h_{i}	$=29 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$
Inlet ambient temperature	$\mathrm{h}_{0}=12 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$	
Outlet ambient temperature	$\mathrm{T}_{\mathrm{i}}=40{ }^{\circ} \mathrm{C}$	
	$\mathrm{T}_{\mathrm{o}}=15{ }^{\circ} \mathrm{C}$	

23.3 Analytical solution

Heat loss per unit area	q
Intermediate temperature	T_{2}

23.4 Calculations

23.5 Numerical solution

23.4 Calculations 24 Temperature distribution in a infinite long fin

24.1 Aim

To determine the temperature distribution in a infinite long fin

Figure 24-1 : Circular fin of infinite length

24.2 Specification of the fin

Diameter of fin

Length of fin

Temperature of wall
$\mathrm{t}_{\text {wall }}=95^{\circ} \mathrm{C}$

Ambient temperature
$\mathrm{t}_{\text {ambient }}=25^{\circ} \mathrm{C}$

Convective heat transfer coefficient

Thermal conductivity of fin

Perimeter of fin

24.3 Analytical solution

m	$=\sqrt{\frac{h P}{K A}}$	$=2.01 / \mathrm{m}$
Heat loss per unit area	$q=m K A \Theta_{o}$	$=0.865 \mathrm{~W}$

23.4 Calculations

24.5 Numerical solution

23.4 Calculations

DEPARTMENT OF MECHANICAL ENGINEERING

Vision:

To be centre of excellence in Mechanical Engineering equipping students with top notch competencies in the domain of information technology.

Mission:

- Promote best teaching-learning, research, innovation and also instill professional ethics, cultural values and environmental awareness among the students
- Establishing learning ambience with best infrastructure facilities

